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Abstract: Obtaining an improved construction quality, choosing optimal solutions 

from the socio-economic point of view, can be attained by completing the strength and 
stability calculation with laboratory experimental research on models and with measurements 
and observations on constructions at full scale, made by means of machines and high-tech 
methods. Geodetic methods, by the high precision of measurements as well as the methods for 
data processing and estimation of the quality of results,  represent a basic system in the 
extensive process of experimental study of constructions, in many respects being 
irreplaceable. The paper introduces a direct calculation algorithm of the horizontal 
deformation vector of the studied construction, using precision geodetic measurements, the 
method of conditional measurements and a mathematical model to estimate accuracy results. 

Keywords: conditional measurements, observed constructions, horizontal 
deformations, accuracy assessment.  

  
 
1. Introduction  

 
Choosing the optimal solutions for the design and rational operation of buildings 

implies a thorough and highly complex system, that is required to be performed both at the 
beginning of the construction process, in the design and planning phase, and finally, in the 
verification phase of the construction the implementation and operation (Nistor Gh., 1993). 
Experimental research of a building, aiming to establish its behavior under the action of a 
specific trial system, allows determining at any building point or area, all or the main values 
that typically are obtained by computing: stresses, strains, static and dynamic displacements, 
rotations, axial forces, etc. Of these, only a part can result directly from statements or records 
of meters and control instruments (AMC). 

  Unless otherwise obtained through laboratory testing of construction, other elements 
can be known from observations and measurements over a long time, based on the study and 
analysis of behaviour in time (in situ), under operational conditions, using geodetic and 
photogrammetric methods. Concurrent  analysis and interpretation of laboratory experimental 
research results with design and calculation results and with the results obtained from 
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processing the measurements made at monitoring the behaviour in situ, is a precious material 
to achieve optimal construction solutions.   

Geodetic methods, through high precision measurements, and by data processing 
methods and estimation of the quality of results represent a basic system in the extensive and 
difficult process of studying the in situ construction behaviour. Geodetic methods, included in 
the geometric methods group, report the position of certain points (control points), fixed on 
the construction, to fixed points outside the construction, in non-deformable grounds and 
outside the construction influence area, both making up the geodetic network to track. 

 For large constructions (dams, locks, bridges, etc.) determining the deformation and 
horizontal displacement vector is performed by the trigonometric-microtriangulation method. 
Determination of deformation and horizontal displacement vector of control points fixed on 
the construction under study involves repeated / cyclical measurements of the 
microtriangulation network with the same precision with which it was originally built. 
Compensation calculations must be performed rigorously by the least squares method in order 
to obtain the most probable values of the changes in the positions of the control points in plan, 
with the possibility of assessing the accuracy of the compensation results, and thus, the 
accuracy of the horizontal deformation vector of control points and by this the position 
change of the building under the influence of several factors. 

 Reference network compensation is made rigorous by the indirect measurements 
method or conditional measurements method. In the classical sense, the X, Y plane 
rectangular coordinates of control points are obtained after which by analysis of the 
distribution of control points coordinates obtained in each cycle the sizes of absolute, partial 
and total deformations and horizontal displacements can be determined. 

Since a part of the compensation data remain unchanged in all measurements cycles, 
the paper will present a direct calculation algorithm of ΔXk, ∆Yk deformation components, 
depending on measured elements changes, such as the azimuth angles, sides, due to changes 
in the studied construction position. The presented method eliminates network compensation 
operation in every cycle except for the initial / zero cycle. For the developed algorithm the 
mathematical model for assessing the precision of results is alsopresented. 

 

2. Establishing the calculation algorithm 
 
It is supposed that in order to determine the deformations and horizontal 

displacements vector of a number of N control points on the studied construction  in relation 
to a P number of microtriangulation network fixed points, an n number of direct 
measurements of the same accuracy (angles, distances) were performed in the field, in the 
initial / zero cycle. 

In developing the calculation algorithm for the deformation and displacement vector 
of the studied construction, in direct function of the cyclic variation of the elements measured 
in the field, it will be proceeded as follows: first, direct measurements of direct measurements 
resulting from the initial / zero cycle is made, in order to obtain the most likely values  of 
direct measurements bound by conditions by means of the matrix  relationship  

                                                               ,0
1

0
1

0
1 nnn VMX +=                                                                  (1) 

where 0
1nX – most likely values of direct measurements bound by conditions; 0

1nM – average 
values of measured sizes in the field; 0

1nV – the values of corrections made to values measured 
in the field, obtained by the condition of minimum. 

In the system of condition equations 
                                                    rjşiniundexG ij ,1,1,0)( 0 ===                                        (2) 
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the replacement in (1) being made, the system of the condition equations of correction is 
reached, having a non-linear form 

                                                                       .0)( 00 =+ iij VMG                                                      (3) 
Compensation measurements being made under the condition of minimum, first the 

linearization operation will be made, resulting the matrix equation 
                                                                 , <,00

1
0
1 nrWVA rnrn =+                                                     (4) 

where the notations were made: n – the number of direct measurements; r – the number of 
linear condition equations of corrections / unknowns; 0

1rW  –  free terms vector / non-closures. 
The developed equation matrix is as follows: 
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Geodetic measurements compensation is made under the condition of minimum 
                                                                          .min)( 0

11
0 =n

T
nVV                                                         (6) 

In the case of conditional measurements compensation the sizes of corrections / 
unknowns 0V should simultaneously fulfill bothe the condition of minimum (6), and the 
system of condition equations (4); instead of condition (6)  the equivalent Lagrange function 
will written, by introducing a number of unknown parameters representing Gauss correlates or 
Lagrange multipliers, K, whose number equals the number of equations of condition, r. The 
Lagrangian will be 

                                             .min)()(2)( 0
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0
11

00
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0 =+−= rnrn
T
rn

T
n WVAKVVG                               (7) 

The function minimum will be obtained by canceling the first partial derivatives 
related to the corrections   
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hence the correction equations system, according to correlates 

                                                                            ,0
1

0
1 r

T
nrn KAV =                                                             (9) 

which, having n – equations and (n+r) unknowns, ,0
1

0
1 rn KşiV cannot be solved. Therefore, the 

solution is possible by re-uniting equations (4) si (9) 
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The solving operation will be made by substitution of unknowns (9), in the second 
equation of the system (10), resulting   

                                               .00 0
1

0
1

0
1

0
1 =+⇒=+ rrrrrr

T
nrrn WKNWKAA                                   (11) 

This is the normal system of correlates, hence correlates vector will result 
                                                      .0

1
0
1

0
1

10
1 rrrrrrrr WQKWNK −=⇒−= −                                       (12) 

The 
rrQ  matrix is the matrix of weight coefficients of correlates, also called co-actors 

matrix. 
By replacing the correlates vector in equation (9) the corrections vector will be 

obtained. In their turn, they are replaced in equation (1), to give the most probable values of  
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direct measurements related by conditions 0X .  Finally, based on compensated sizes, the 
elements entering the calculation of rectangular coordinates of control points embedded in the 
studied construction are calculated 00

kk YşiX , where k = 2N.  
In the conventional sense, measurements compensation in each cycle of observations t 

will have to be done, where Tt ,1= , resulting the coordinates of t
k

t
k YşiX control points. The 

differences in coordinates willlead to  components on the two-axes 
                                        .2,, 00 NkYYYXXX k

t
k

t
kk

t
k

t
k =−=Δ−=Δ                                  (13) 

Based on components, the deformation and horizontal displacements vector of the 
construction in the control point t

kL
2

 will be calculated, and its orientation, t
kL
2

θ , compared to 

the X axis of the chosen system: 
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When the results of each measurement cycle are referred to the zero / initial cycle 
results, total deformations are obtained. When the results of two cycles of conjugate 
observations are analyzed partial deformations are obtained. This conventional way of 
computing is difficult in practice. Therefore, a less sophisticated method will be shown, with a 
specific and advantageous calculation algorithm, since it eliminates the laborious rigorous 
network compensation operations, from the first cycle of proper measurements, when studied 
construction behaviour is actually highlighted. 
  The algorithm to be shown will allow determination of variations / changes in 
component sizes on the two axes, in direct function of variations between the average values 
of measurements taken in cycle t, t

iM , and the most probable sizes of compensated 
measurements in the zero / initial cycle, 0

iX . 
The solving starts by applying the known method of expressing the correlates of the 

normal network reference equations depending on the free terms of normal equations. Next, 
the successive elimination of correlates will be done, yielding formulas by means of which the 
most probable values of the components of the deformation vector of each control point will 
be calculated, as based on the differences / changes between the measurement values in the 
field of cycle t, Tt ,1= , and the values resulting from the compensationof the 
microtriangulation network in the zero cycle.  

In terms of the above shown, the order of operations is as follows: 
The linear system of condition equations of corrections (4) is considered, shown in the 

developed form 
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and the corresponding system of normal equations of correlates (11) under the developed 
form 

                                          

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]

.0
......

...
......

...

...

2

1

2

1

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

t
r

t

t

t
r

t

t

w

w
w

k

k
k

rrbrar

brbbab
arabaa

                          (16) 



G. Nistor, C. Onu, D. Pădure, I.C. Greșiță  
Development of a Direct Calculation Algorithm of the Horizontal Strain Vector of the Studied Construction, 
Using Conditional Geodetic Measurements 

 

  - 169 -

As based on these, the expression of correlates will be made depending on the free 
terms of the condition equations, with equation (12) with the general form 
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The matrix is the matrix of weight coefficients of correlates, also called co-factors 
matrix, and its elements are obtained either by inverting the matrix of normal equations 
coefficients of correlates, 1−= rrrr NQ , or in additional columns to the solving schemes of 
normal equations of correlates, Gauss-Doolittle or Cholesky-Banachiewicz (Nistor Gh., 
1996). 

Corresponding to the condition equations system (15), in the correction equations 
system according to correlates (17), the corrections vector is expressed 
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In the obtained system the correlates are replaced in equation (17), yielding the 
corrections equations system, expressed according to the free terms of the condition equations  
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or developed 
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Marking the product of matrices 
                                                                ,rn

T
nrnr QAZ −=                                                    (21) 

or 
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whose elements remain constant for all cycles of observations of the network, the vector of 
compensated corrections will be expressed by the relation 
 

                                                               ,11
t

rnr
t

n WZV =                                                         (22) 
or 
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Next, perform the differentiation of formulas for calculating the coordinates of the 
control points is done, they representing the coordinates changes due to changes of measured 
elements of the network. Marking these changes of the coordinates of a network control point 
k (k = 2N),  its result from re-compensation will be reached. Formulas resulting from the 
coordinates differentiation, will be shown in the form 
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where 
''

2
'
1 ,...,, nvvv  are the modified network elements, determined by comparing the new 

elements of the compensated network with the corresponding elements of the values which 
were obtained after the first network compensation. Note the differences between the new 
measured elements in the t cycle and their compensated sizes, obtained in the result of the first 
network compensation and with nvvv ,...,, 21 , as the above corrections have been named in 
the new compensation. In this way the relations can be written 
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These expressions are introduced in (23) and by replacing nvvv ,...,, 21 with the expressions 
(22) for the correction coordinates, will result the equations   
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Further on, the relations (25) the free terms 
t
jw  are replaced with correspondents of these 

parts in equation (15), by previously replacing the 
t
iv  corrections by

t
n

tt vvv −−− ,...,, 21  will 
lead to the corrections / components equations system.  
Thus: 
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The obtained system (26), made for the microtriangulation network, allows direct 
calculation of deformation and displacement vector components of all control points, in direct 
function of the average size variations measured directly in cycle t, t

iv , relative to their values 

obtained by compensating only the zero cycle. Coefficients iϕ  şi iψ , ni ,1= , remain 
constant for all subsequent measurements cycles. 
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3. Evaluating the results precision 
 
As based on the deformation vector components forms (26), it is possible to assess the 

accuracy of the results. Considering the components forms as functions of the independent 
sizes measured directly, the sizes of the components of the square error can be written, 
resulting   
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where is , ni ,1= , are mean square errors of the network direct measurements. In case the 

measurements are of the same accuracy, 021 ... ssss n =≈≈≈ , the components errors will 
be: 

                                                    [ ] [ ] .; 2
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2
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kk YX ±=±= ΔΔ                        (28) 
 

With forms (27) and (28) respectively, the mean square errors of horizontal 
deformation vectors can be calculated for each control point. For example, for  point K will 
result: 
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The confidence interval within which the true vector size with a probability                 
P = 67.3%, corresponding to the mean error will range,  is expressed by the double inequality 
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The precision of determining the horizontal deformation vector will be inversely 
proportional to the length of the interval. 
 

4. Conclusions 

From the presentation of the calculation algorithm and the mathematical model for 
assessing the precision of results, the following conclusions come out: 

a. The algorithm presented, to be processed in a microtriangulation network using the 
conditional direct measurements enables fast and reliable calculation of horizontal 
deformation vectors in direct function of the cyclic variations of sizes measured directly in the 
field (angles, directions, sides) and subjected to thorough compensation operation. 

b. Making the algorithm was possible because a number of compensation elements 
remain unchanged.  

c. The algorithm involves conventional compensation of the whole network through 
conditional measurements, of the same precision, or weighted, only the zero / initial cycle,  to 
yield the most probable values of the measured sizes niX i ,1,0 = .  The compensated sizes of 
these measurements will be reference elements, to which direct measurements performed in 
all other cycles will report.   

d. In all other cycles t, (t = 1,T) conventional compensation of the entire network will 
be avoided, by establishing the computing relationships of the components of horizontal 
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deformation vectors in the control points t
k

t
k YşiX ΔΔ , where k = 2N, in direct function of t

iv  
changes / differences, among the mean sizes of cycle t measurements and the compensated 
sizes of the same measurement in the zero / initial cycle. The results are similar to those 
obtained in the case where the network would have been re-compensated in the cycle t. 

e. The X, Y system of axes in relation to which determinations are made will be 
chosen so that they are directed in relation to the axis of the construction, on the directions of 
maximal and minimal deformation.  

f. The mathematical model (27) ... (30), enables evaluation of results precision as 
based on the mean square error of the components of the horizontal deformations vectors, as 
well as writing the confidence intervals within which the true sizes will range. It is worth 
mentioning that in case that there is no zero value within the interval, it means that there is a 
change in the position of the considered control point, including the studied construction. 
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